Changes in the chemical and dynamic properties of cardiac troponin T cause discrete cardiomyopathies in transgenic mice.

نویسندگان

  • Briar R Ertz-Berger
  • Huamei He
  • Candice Dowell
  • Stephen M Factor
  • Todd E Haim
  • Sara Nunez
  • Steven D Schwartz
  • Joanne S Ingwall
  • Jil C Tardiff
چکیده

Cardiac troponin T (cTnT) is a central component of the regulatory thin filament. Mutations in cTnT have been linked to severe forms of familial hypertrophic cardiomyopathy. A mutational "hotspot" that leads to distinct clinical phenotypes has been identified at codon 92. Although the basic functional and structural roles of cTnT in modulating contractility are relatively well understood, the mechanisms that link point mutations in cTnT to the development of this complex cardiomyopathy are unknown. To address this question, we have taken a highly interdisciplinary approach by first determining the effects of the residue 92 mutations on the molecular flexibility and stability of cTnT by means of molecular dynamics simulations. To test whether the predicted alterations in thin filament structure could lead to distinct cardiomyopathies in vivo, we developed transgenic mouse models expressing either the Arg-92-Trp or Arg-92-Leu cTnT proteins in the heart. Characterization of these models at the cellular and whole-heart levels has revealed mutation-specific early alterations in transcriptional activation that result in distinct pathways of ventricular remodeling and contractile performance. Thus, our computational and experimental results show that changes in thin filament structure caused by single amino acid substitutions lead to differences in the biophysical properties of cTnT and alter disease pathogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential interactions of thin filament proteins in two cardiac troponin T mouse models of hypertrophic and dilated cardiomyopathies.

AIM Mutations in a sarcomeric protein can cause hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM), the opposite ends of a spectrum of phenotypic responses of the heart to mutations. We posit the contracting phenotypes could result from differential effects of the mutant proteins on interactions among the sarcomeric proteins. To test the hypothesis, we generated transgenic mice e...

متن کامل

Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice.

Hypertrophic cardiomyopathy (HCM) is a disease of sarcomeric proteins. The mechanism by which mutant sarcomeric proteins cause HCM is unknown. The leading hypothesis proposes that mutant sarcomeric proteins exert a dominant-negative effect on myocyte structure and function. To test this, we produced transgenic mice expressing low levels of normal or mutant human cardiac troponin T (cTnT). We co...

متن کامل

Analysis of the relation between coping ways with stress and Cardiac Biomarker Troponin I in coronary heart disease patients

Introduction: Coping ways with stress in coronary heart disease patients can lead to significant changes in levels of Cardiac Biomarker Troponin I, but researchers had not explored it empirically. So, the main objective of this study was to identify the relationship between coping ways with stress and Cardiac Biomarker Troponin I and also, finding coping ways that predict changes in the concent...

متن کامل

A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy.

Mutations in multiple cardiac sarcomeric proteins including myosin heavy chain (MyHC) and cardiac troponin T (cTnT) cause a dominant genetic heart disease, familial hypertrophic cardiomyopathy (FHC). Patients with mutations in these two genes have quite distinct clinical characteristics. Those with MyHC mutations demonstrate more significant and uniform cardiac hypertrophy and a variable freque...

متن کامل

Troponin Mutation Caused Diastolic Dysfunction and Experimental Treatment in Transgenic Mice with Cardiomyopathy

Troponin, a contractile protein of the thin filament of striated muscle, consists of three subunits: troponin C (TnC), troponin T (TnT), and troponin I (TnI). Cardiac troponin I (cTnI) plays a critical role in regulation of cardiac function. The physiological effect of cTnI, as an inhibitory subunit of troponin complex, is to prevent the interaction between myosin heavy chain heads and actins, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 50  شماره 

صفحات  -

تاریخ انتشار 2005